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The amplitude ratio of the susceptibility �or second size moment� for two-dimensional percolation is calcu-
lated by two series methods and also by Monte Carlo simulation. The first series method is an approach based
upon integrating approximations to the scaling function. The second series method directly uses low- and
high-density series expansions of the susceptibility, going to unprecedented orders for both bond and site
percolation on the square lattice. Putting all methods together we find a consistent value �− /�+=162.5±2, a
significant improvement over previous results that placed the value of this ratio variously in the range of 14 to
220.
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Percolation is one of the fundamental problems in statis-
tical mechanics �1,2� and is perhaps the simplest system ex-
hibiting critical behavior. Through its mapping to the q-state
Potts model �for q→1� many theoretical predictions follow,
such as exact critical exponents in two dimensions. Yet many
unanswered questions remain. One of these is the values of
amplitude ratios, which represent universal ratios of quanti-
ties related to integrals of the scaling function. A great
amount of work has been done investigating amplitude ratios
of various systems, both to demonstrate that systems ex-
pected to be in a given universality class have the same ra-
tios, and to determine their values accurately �3�. The study
of amplitude ratios remains an active area of research �e.g.,
�4–11��.

In this paper we study specifically the universal amplitude
ratio �− /�+ for percolation, where �− and �+ are the ampli-
tudes of the second size moment �also called the susceptibil-
ity� in the low- and high-density phases, respectively. This
ratio has been especially difficult to estimate accurately and
the status of the estimates is very controversial. In �3� values
are quoted in a wide range from 14 to 220 based on numeri-
cal estimates from Monte Carlo simulations and series ex-
pansions for various percolation models. Furthermore, there
are no reliable field-theoretical estimates for this quantity.
Several years ago Delfino and Cardy �12� studied the q-state
Potts model using methods from quantum field theory and
predicted a value of 74.2 for percolation, by extrapolating the
results for q=2, 3, and 4 to q=1. This was consistent with
the numerical work of Corsten et al. �13�, who gave the
value 75 �+40,−26�, but inconsistent with many other mea-
surements �3�. In this work, we study bond and site percola-
tion on the square lattice and use extensive exact enumera-
tions to obtain estimates for �− /�+, using two different
approaches: one an approach based upon directly integrating
approximations to the scaling function, and the second a
more conventional analysis of the high- and low-density se-
ries for the susceptibility. The estimates for the amplitude
ratio are consistent with the value �− /�+=162±3. We also

carried out a Monte Carlo calculation, which gave an almost
identical value of 163±2. These results are a significant
improvement on previous published numerical estimates.

Percolation models are commonly formulated in a lattice
setting with the edges and/or vertices occupied �or vacant�
with probability p �or 1− p�. In this paper we limit our
study to bond and site percolation on the square lattice Z2.
We shall refer to occupied edges and vertices as bonds
and sites, respectively. Nearest-neighbor bonds �sites�
are said to be connected and clusters are sets of connected
bonds �sites�. The behavior of the model is controlled by
the occupation probability �or density of bonds or sites� p.
When p is smaller than a critical value pc all clusters remain
finite. Above pc there is a nonzero probability of finding
an infinite cluster. The critical occupation probability
is known exactly for bond percolation, pc=1/2 �14�, and
to a high degree of numerical accuracy for site percolation,
pc=0.592 746 21�13� �15�. The average cluster size
S�p���−�pc− p�−�, which diverges as p→pc

−, plays a role
similar to a susceptibility, with �=43/18.

Percolation problems are closely related to the combina-
torial problem of the enumeration of lattice animals, which
are connected subgraphs of a lattice. The size of a lattice
animal is the number of connected sites �or bonds�. A vertex
�or edge� is said to be a perimeter site if it is a nearest
neighbor of a site in the lattice animal. Series expansions for
various percolation properties, such as the average cluster
size, can be obtained as weighted sums over the number of
lattice animals, gs,t, enumerated according to the number of
sites �bonds� s and perimeter t. Perimeter polynomials are
defined as

Ds�q� = �
t

gs,tq
t. �1�

We have calculated the perimeter polynomials up to size 35
�bond� and 40 �site�. The central property describing the
cluster statistics in percolation is ns, defined as the number of
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clusters �per site� containing s occupied sites or bonds, as a
function of the occupation probability p,

ns�p� = psDs�1 − p� = �
t

gs,tp
s�1 − p�t. �2�

The scaling hypothesis �2� states that ns behaves as

ns�p� = c0s−�f„c1�p − pc�s�
… �p → pc,s → �� , �3�

where the critical exponents � and � and the scaling function
f are universal, while c0 and c1 are nonuniversal metric fac-
tors. In two dimensions �=187/91 and �=36/91. We shall
often use the scaling variable z=c1�p− pc�s�. It then follows
that �2�

S�p� = �
s

s2ns�p� �� c0s2−�f„c1�p − pc�s�
…ds

=
c0c1

−�

�
�p − pc�−�� �z�−1+�f�z�dz

= �±�p − pc�−�, �4�

where �= �3−�� /�. The integration in the high-or low-
density case extends from 0 to � or from −� to 0, respec-
tively. The amplitudes �+ and �− are given by the nonuni-
versal constant c0c1

−� /� multiplied by the corresponding
integrals of the universal scaling function f�z�. It thus fol-
lows that the ratio �− /�+ is universal. Now, from the knowl-
edge of ns�p� for finite s, where ns�p� is a polynomial in p,
we can estimate the integrals in �4� by approximating f�z�
by n̄s�z�=s�ns�z�, where z= �p− pc�s�, and taking the ratio of
the relevant integrals involving n̄s�z�. Obviously, n̄s�z� is
just a polynomial approximation to f�z� so we cannot extend
the integration to infinity �the integral would just diverge�.
However, there is a natural cutoff provided by the scaling
variable z and the fact that the physical low-density region is
0	 p
 pc, so the integral involving z over the low-density
region runs over the interval �−z−=−s�pc ,0�. Likewise, inte-
grals over the high-density region include the interval
�0,s��1− pc�=z+�. The integrals are easily evaluated since
n̄s�z�=�kakz

k are polynomials, which we can determine by
exact enumeration. We get in the high-density case

Is
+ = �

0

z+

�z��−1n̄s�z�dz = �
0

z+

z�−1�
k=0

akz
kdz

= �
k=0

ak�z+�k+�/�k + �� ,

and in the low-density region

Is
− = �

−z−

0

�− z��−1n̄s�z�dz = �
0

z−

z�−1�
k=0

ak�− z�kdz

= �
k=0

�− 1�kak�z−�k+�/�k + �� ,

from which we obtain the estimate �s
− /�s

+= Is
− / Is

+. We shall
call this ratio rs for short. The amplitude ratio �− /�+ is ob-
tained from the limit of rs as s→�.

In Fig. 1 we show �in the left panel� the estimates of
the ratio rs= Is

− / Is
+ for bond percolation. The estimates display

some curvature when plotted against 1 /s, but seem to
become close to a straight line and extrapolate to a value
around 160. In order to extrapolate to the limit s→�
with a bit more confidence we need to try and work out
the asymptotic form of rs. In the middle panel we show a
log-log plot of the difference between consecutive ratios,
ds=rs−rs−1, against 1 /s. Clearly, ds has a power-law decay
with 1/s. This means that rs	�− /�++a /s�, and it is
straightforward to show that then ds�1/s�+1. We now try to
estimate the decay exponent �. In the right panel of Fig. 1
we plot estimates for the local exponent �s against 1 /s,
where �s is obtained from a linear regression of log ds vs
log s using the five values from s to s−4. From this figure we
estimate that �+1=1.85�5�.

Next we extrapolate the data for rs by fitting directly to an
assumed asymptotic form

rs =
�−

�+ + �
i�0

ai

s�i
, �5�

where the exponents �i form a strictly increasing sequence.
By way of justification we can mention that similar forms are
commonly found in the study of the asymptotic behavior of
series coefficients and arise from corrections to scaling. We
do not know the values of �i, except for the leading exponent
�0=�, so we assume that �i=�+ i �this is akin to including
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FIG. 1. The amplitude ratio rs for bond percolation �left panel�, a log-log plot of the difference between consecutive ratios �middle panel�,
and the local exponent of the difference plot �right panel�.
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only one nonanalytic correction to scaling�, and fit to the
form

rs =
�−

�+ + �
i=0

k−1
ai

s�+i . �6�

That is, we take a subsequence of terms 
rs ,rs−1 , . . . ,rs−k�,
plug into the formula above, and solve the k+1 linear equa-
tions to obtain estimates for the amplitudes. It is then advan-
tageous to plot estimates for the leading amplitude �− /�+

against 1 /s for several values of k. The results using the
value �=0.85 are plotted in Fig. 2. We notice that the esti-
mates obtained with k=2, 3, and 4 are quite stable and show
little dependence on s for large values. This would indicate
that rs is well approximated by the assumed asymptotic form.
We estimate from this that �− /�+=159.2±0.2, where the er-
ror bars represent fluctuations but not systematic error asso-
ciated with this method. We also tested the sensitivity of the
extrapolation procedure to the value of � by fitting to the
form �6� using the values �=0.8 and 0.9, respectively. The
resulting estimates for the amplitude ratio were only margin-
ally lower or higher and the procedure is not very sensitive to
changes in �, at least within a reasonable range.

A similar analysis was carried out for site percolation. In
this case the estimates for rs displayed a pronounced curva-
ture when plotted against 1 /s and the extrapolation to the
limit s→� was more challenging than in the bond case. We
estimate that �− /�+=164.5±1.5.

For our second approach, we have obtained estimates for
the amplitudes �− and �+ directly from the low- and high-
density series for the second size-moment M2�p�. In the low-
density region the series was simply obtained from the
perimeter polynomials

M2�p� = �
s

s2ps�
t

�1 − p�tgs,t � �−�pc − p�−�,

while the high-density series was calculated separately to
order 51 �bond� and 55 �site�. Estimates for the amplitudes

were obtained by transforming the original series, using our
knowledge of the critical point and exponents, into series
which have a simple pole at pc, with a residue from which
we can calculate the amplitude. The following two methods
are quite standard �16�. We can raise the series to the power
1/� to get a series with the behavior ��−�1/� / �pc− p� or we
can look at the series M2�p��pc− p��−1 which should have the
behavior �− / �pc− p�. The amplitudes can then be estimated
by forming Padé approximants to the transformed series and
calculating the residues. Another approach is to get com-
pletely rid of the physical singularity at pc by studying the
transformed series M2�p��pc− p�� or M2�p�1/��pc− p� and
evaluating Padé approximants to this series at pc. As pointed
out by Daboul et al. in their recent study of two-dimensional
percolation �17�, such biased methods for calculating the am-
plitudes generally lead to more accurate estimates when
judged purely on the spread among the estimates as obtained
from individual approximants. However, this higher apparent
accuracy can be misleading in that biased approximations
can display systematic corrections on a scale exceeding the
fluctuations. Thus great care must be taken and one should
be careful not to rely too heavily on the biased estimates,
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FIG. 3. The high-density amplitude �̃=qc
−4�+ for site

percolation.
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FIG. 2. Estimates of the amplitude ratio �− /�+ for bond
percolation from fits to the form �6� with �=0.85.
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particularly when it comes to determining the error bars on
the estimates.

In Fig. 3 we have plotted estimates for the high-density

amplitude �̃=qc
−4�+ for site percolation. The estimates are

obtained from Padé approximants to the series 1
q4 M2�q��qc

−q��−1 �upper panel� and 1
q4 M2�q��qc−q�� �lower panel�,

where the factor 1 /q4 is included in order that the trans-
formed series has a nonzero constant term. As expected the
biased estimates �lower panel� are quite well converged and
appear to settle down at a value around 0.022 08�2�. This is
obviously slightly at odds with the unbiased estimates �upper
panel� which favor a higher value, but these estimates have a
greater spread and a pronounced downward drift. Estimates
from the other methods display similar trends and in particu-
lar have a greater spread than those in the lower panel. To

be cautious we adopt the rather conservative estimate �̃

=0.022 15�15� and from this we get �+=qc
4�̃=0.000 609�4�.

Similarly we estimate that in the low-density case
�−=0.098 19�6� and thus �− /�+=161.2±1.2. From a similar
analysis we estimate that the amplitudes of the second size
moments of bond percolation in the low- and high-density
phases are �−=0.150 01�8� and �+=0.000 9290�15�, which
yields the estimate �− /�+=161.5±0.4 for the amplitude
ratio.

The estimates from the series studies are consistent with
the value �− /�+=162±3, which is a significant improvement
over previous results. We have also carried out a Monte
Carlo �MC� test of this amplitude ratio, studying bond per-
colation on the square lattice. The method used was to gen-
erate individual clusters by a growth algorithm on a large
lattice at p=0.47, 0.48, 0.49, 0.495, 0.505, 0.51, 0.52, and
0.53. For p
 pc, all the clusters terminate, while for p pc,
the clusters that keep growing beyond a clear cutoff can be
identified as being part of the infinite cluster and discarded.
This method proved superior to previous MC work which

generally count clusters on fully populated lattices and have
significant finite-size effects; here, there were essentially no
finite-size effects as long as p is kept sufficiently away from
pc and the lattice is made large enough. This work yielded
the result �− /�+=163±2, which was quoted previously in
�18�.

The two determinations of the amplitude ratio �by series
and Monte Carlo methods� were done separately and the
analysis of each was done by the two authors independently.
Putting these two unbiased results together, we propose a
final value of 162.5±2, where the estimated error is at the
68% confidence interval. We have thus found consistent pre-
cise series expansion and Monte Carlo results, laying to rest,
we believe, the controversy on the value of this amplitude
ratio. Most likely, the wide spread in previous measurements
was due to the large finite-size effects in Monte Carlo simu-
lations, and the relatively short series used in exact enumera-
tions. We have eliminated both of those shortcomings in the
present work.

As part of a larger ongoing project we have also calcu-
lated perimeter polynomials on the honeycomb lattice, and a
preliminary analysis yields the estimates �− /�+=166±5
�bond� and 170±7 �site�. Finally, we mention in passing that
we have studied the area moments of bond percolation on
the square lattice �where the area is the volume enclosed by
the external hull walk� �see �19� for details� and find that the
amplitude ratio of the second area moment is 175±10. This
value is close to the one for the second size moments, but it
is expected to have a somewhat different value because it
represents a different moment of the scaling function f�z�.
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